МЕТОД ПОРЯДКА — улучшенный метод встречаемости, с помощью которого учитывается встречаемость доминирования вида. Используются мелкие площадки, регистрируется встречаемость данного вида в % (RF) и в том числе его встречаемость с доминированием по фитомассе (или… … Словарь ботанических терминов
Метод встречаемости — метод учета видов на (в) большом числе случайно взятых площадок (проб) путем установления частоты присутствия особей в сообществе и наличия константных видов. Метод встречаемости разработал К. Раункиер (1909). См. также Встречаемость.… … Экологический словарь
Метод Рунге — Кутта — Методы Рунге Кутта (Методы Рунге Кутты) важное семейство численных алгоритмов решения обыкновенных дифференциальных уравнений и их систем. Данные итеративные методы явного и неявного приближённого вычисления были разработаны около 1900 года… … Википедия
Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… … Википедия
Метод роя частиц — (МРЧ) метод численной оптимизации, для использования которого не требуется знать точного градиента оптимизируемой функции. МРЧ был доказан Кеннеди, Эберхартом и Ши[1] [2] и изначально предназначался для имитации социального поведения.… … Википедия
Метод Эйлера — Метод Эйлера наиболее простой численный метод решения (систем) обыкновенных дифференциальных уравнений. Впервые описан Леонардом Эйлером в 1768 году в работе «Интегральное исчисление»[1]. Метод Эйлера является явным, одношаговым методом… … Википедия
Метод характеристик — (англ. Method of characteristics) метод решения дифференциальных уравнений в частных производных. Обычно применяется к решению уравнений в частных производных первого порядка, но он может быть применен и к решению гиперболических… … Википедия
Метод Нелдера — Мида — Последовательные симплексы в методе Нелдера Мида для функции Розенброка (англ.) (вв … Википедия
Метод золотого сечения — метод поиска значений действительно значной функции на заданном отрезке. В основе метода лежит принцип деления в пропорциях золотого сечения. Наиболее широко известен как метод поиска экстремума в решении задач оптимизации Содержание 1 Описание… … Википедия
Метод потенциалов — является модификацией симплекс метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций. Содержание… … Википедия